
8/30/21

1

Genoveffa (Genny) Tortora
Department of Computer Science, 

University of Salerno

Are developers and software engineers 
a simple gear of the wheel?

Contents
A bit of history 

Relevance of human factor

Reccomendations

Some examples

Conclusion 

"software engineering"

coined in the late 60s by Margaret Hamilton

Software engineering definition is still being 
debated as they struggle to come up with ways to 
produce software that is “cheaper, better, faster”



8/30/21

2

IEEE definition
“Software engineering means application of systematic, 
disciplined, quantifiable approach to development,
operation and maintenance of software”

A number of differences with other engineering disciplines:

- The artifact are intangible

- Issues in managing complexity

- No physical laws 

- Driven by technology development, and

Software engineering (w.r.t. other 
engineering discipline) can be considered 
very human “labor-intensive”

Software development is very labor-intensive and, is 
therefore, prone to human error

- The human component is an essential part of design and 

development

- Development is based on creativity and the ingenuity of 

people

- The effectiveness of tools and approaches strongly 

depends on the human component

- Software engineering presents many similarities with 
social sciences and psychology 

Software engineering 
is very much 
governed by human 
behavior through the 
people developing 
software

We cannot expect to 
find any formal rules 
or laws except when 
we are dealing with 
technical aspects



8/30/21

3

What is software??

What is hardware??

Hardware includes 
the physical parts of 

a computer
So what?



8/30/21

4

… peopleware??

Peopleware refers to 
one of the three 
aspects of computer 
technology—the other 
two aspects are 
hardware and 
software

Peopleware refers to 
anything that has to do with 
the role of human beings in 
the development of a 
software

Peopleware is 
clearly of interest 

because the human 
factor in software 

development is of 
primary importance

Software is a by product of human activities that 
incorporates our problem-solving capabilities, 
cognitive aspects, and social interaction 

Humans are more complicated and less 
predictable than software

Software development is among the most 
difficult tasks performed by humans today.



8/30/21

5

Technical skills are not less relevant to 
a software project’s successful 
outcome; rather, the human factor is 
a make-or-break issue that affects 
most software projects

The cross-section of human and technical factors 
is not new
However, human factors are usually related to 
soft skills, not rocket science or hardcore 
engineering

From management’s perspective, an understanding 
of human factors is important in the context of the 
practice of software engineering

People sometimes
struggle to remember

that we’re dealing
with creatures of logic

and emotions, not
just ones and zeros

Software engineering is essentially a human 
activity, NOT just a technical matter of 
technology

To evolve, we must examine our discipline through 
new lenses, from several perspectives

As many software managers can attest, major failures in 
software projects eventually come down to people.

The study of human factors in software engineering will 
offer different insights and fresh approaches to answering 

many open questions 

Diversity of people and ideas are good for our field



8/30/21

6

Software professionals should also delve into 
nontechnical issues and recognize that the 
people involved in the software development 
process are as important as the 
processes and the technology itself

Software managers need to learn about human 
factors because they frequently deal with 

negotiations and personality conflicts, and value 
having talented developers for the right task 

The software industry needs to encourage 
experiments to understand human factor issues 
collecting data and creating insights to improve 
the overall development process

Background in behavioral science experimentation, a 

strong foundation in empirical research methods and 

knowledge of statistical analysis

Approval from an ethics board to conduct 
pilot studies and experiments in cases where 

sensitive information on human participants is 
collected and used

Growing importance of human factors in 
software engineering research is evidenced by 

tracks in top conferences, dedicated events and 
special issues on top journals



8/30/21

7

What is human factor??

‘’Human factors and 
ergonomics (commonly referred 
to as human factors) is the 
application of psychological and 
physiological principles to the 
engineering and design of 
products, processes, and 
systems’’

‘’The goal of human factors is to 
reduce human error, increase
productivity, and enhance
safety and comfort with a 
specific focus on the interaction 
between the human and the 
thing of interest.’’

and now … free your mind



8/30/21

8

“Because of the 
complex nature of the 
programming task, the 
programmer ’s 
personality—his 
individuality and 
identity—are far more 
important factors in his 
success than is usually 
recognized.” 

“Personality variables 
play a critical role in 
determining interaction 
among program- mers
and in the work style of 
individual 
programmers.” 

Among human 
factors, developers’ 
personality (along 
with its influence on 
individual and team 
performance) has 
attracted the interest 
of the software 
engineering research 
community since the 
1960s 

Only a few numbers of 
empirical investigations 
have been conducted to 
study the effect of 
personality while 
executing software 
engineering tasks 

The data extracted from 
90 studies indicated that 
pair programming and 
team building were 
among the most 
recurring research 
topics

The influence of developers’ 
personality on individual 
performance less studied

Researchers, who 
focus on individual 
performance, consider 
that personality can 
be more 
important than 
development
technology, 
process, or tools



8/30/21

9

Studying personality treats is 
relevant not only for managers, 
but also for researchers and 
educators Project managers could be interested in 

knowing which developers are more 
suitable, based on their personality traits, 
for a given task

Researchers could be interested in studying 
personality traits to improve developers’ 
performance

Educators could be interested in knowing the 
personality traits of students that should be 
smoothed to improve performances

- Five-Factor Model 
- Myers-Briggs Type Indicator 
- Keirsey Temperament Sorter 

Five-Factor Model or Big Five 
Personality Model



8/30/21

10

RQ Is there a correlation between the 
personality traits of computer science students 
and their productivity during the distributed 
software development of multi-platform apps? 

Traits of the FFM 

Developer productivity 
(Analysis of software repositories 

hosted on GitHub)

“Relationships between Personality Traits and Productivity in a Multi-platform Development Context” EASE 2021

• Participants: 31 master students (5 females, 26 males) in 
Computer Science

• Grouped in 13 teams aiming at developing a software 
project concerning the multi-platform development of an 
app commissioned by various companies (fall a.y. 
2019/2020)

• Quasi-experiment

• Data sources: 
• answers to the IPIP-NEO-120 questionnaire to 

measure personality traits. 
• Github repositories of the projects

The most productive developers are those 
who score the highest for the Agreeableness
and Conscientiousness personality traits (and 
their related facets

Agreeable people have a 
kind, sympathetic and 

cooperative attitude; while 
conscientious people are 
organized and reliable

GQM - Analyze personality traits for the purpose of 
evaluating their effect with respect to individual 

performance in fixing bugs from the point of view of 
researchers, project managers, and educators in the 

context of undergraduate students in CS and bug fixing 
tasks in C and Java programs. RQ: Do personality traits 

affect individual performance 
in fixing bugs in C and Java 
programs? 



8/30/21

11

• Participants: 62 bachelor students in Computer Science

• IPIP-NEO-120 questionnaire to measure personality traits. 

A decrease in the neuroticism level of the 
participants is related to an increase in their 
performance in fixing bugs 

neuroticism has a detrimental 
effect on the individual 

performance in fixing bugs—the 
higher the neuroticism level of 

novice developers, the worse their 
individual performance is. 

Stay tuned …

Peopleware is not only 
personality treat

Software engineers’ performance 
could be sensitive to noise



8/30/21

12

Open workspaces are widespread in software 
companies Open workspaces tend to be noisy

Saving money Noisy workspaces

The Effect of Noise on Software Engineers’ Performance ESEM 2018

RQ2: Does noise worsen 
software engineers’ 
performance in fixing
faults in source code?

RQ1: Does noise worsen 
software engineers’ 
performance in 
comprehending
functional requirements?

EXP1 EXP2

Participants 55 Undergraduate 
students

42 Undergraduate 
students

Kind of SE task Comprehension of 
functional requirements

Fault fixing in source 
code

Treatments Noise vs Normal Noise vs Normal

Task Duration 30 minutes 60 minutes

RQ RQ1 RQ2

2 Controlled Experiments Design
EXP1 

(Comprehension of functional 
reqs)

Period 1 Period 2

(30 mins) 
Wash-

out

NOISE

NOISE

NORMA
L

(30 mins) 
Wash-

out

NOISE

NOISENORMA
L

NORMA
LGr

ou
p 

1
Gr

ou
p 

2

Gr
ou

p 
1

Gr
ou

p 
2

Period 1 Period 2

EXP2 
(Fault Fixing in source code)

NORMA
L

Dec 
2016

Gen 
2017



8/30/21

13

The Effect of Noise on Software Engineers’ Performance ESEM 2018

RQ2: Does noise worsen 
software engineers’ 
performance in fixing
faults in source code?

RQ1: Does noise worsen 
software engineers’ 
performance in 
comprehending
functional requirements?

The Effect of Noise on Software Engineers’ Performance ESEM 2018

RQ2: Does noise worsen 
software engineers’ 
performance in fixing
faults in source code?

RQ1: Does noise worsen 
software engineers’ 
performance in 
comprehending
functional requirements?

Lesson #1

Noisy workspaces (e.g., 
those “open”) could 
cause a reduction in the 
performance of software 
engineers that have to 
fix faults

Lesson #2

Fixing faults seems to be 
more vulnerable to noise 
than comprehending 
functional requirements

Lesson #3

A 30-minute wash-out 
period is not enough as far 
as 1-hour fault fixing tasks 
is concerned 

Lesson #4

Noise exerts a detrimental 
effect even when software 
engineers are no longer 
exposed to noise



8/30/21

14

Preliminarily empirical evidences represent the premise for further 
investigations that MUST involve software companies and professionals Academic research

Industrial reality … time to change


